CHROM. 10 578

Note

Persulphate ion as a reagent for the detection of aromatic amines and related compounds on thin-layer chromatography

K. C. KHULBE and R. S. MANN

Department of Chemical Engineering, Ottawa University, Ottawa (Canada) (First received July 5th, 1977; revised manuscript received August 23rd, 1977)

During the systematic study of the anilines¹, aromatic amines, phenols and other related compounds²⁻⁵ by persulphate ion in the absence and in the presence of Ag⁺ ion as a catalyst it was observed that these compounds either gave coloured solutions or precipitated oxidation. Hence it was thought possible that persulphate-silver nitrate mixture in aqueous media may be used as a spray reagent for the identification of aromatic amines and other related compounds by thin-layer chromatography (TLC). While Ekmann⁶ developed the spots by diazotization (spray of 0.2 M NaNO₂ in 0.1 N hydrochloric acid followed by a spray of N-ethyl-1-naphthyl-amine hydrochloride in alcohol), Kitahata and Hiyama⁷ used 1-naphthol-4-sulphonic acid, and Bertetti⁸ used a K₂Cr₂O₇ solution acidified with sulfuric acid. In this paper we describe the results obtained by using an aqueous mixture of K₂S₂O₈ and AgNO₃ as a spray reagent for developing the spots separated by TLC.

EXPERIMENTAL

Materials

Analar-grade Fisher certified K₂S₂O₈ and AgNO₃ were used (Fisher Scientific, Pittburgh, Pa., U.S.A.). All the compounds studied were recrystallized from samples which were either C.P. or Analar of Fisher or Aldrich grade (Aldrich, Milwaukee, Wisc., U.S.A.). The solvents were checked for purity and distilled if necessary.

Spray reagent

A solution of $K_2S_2O_8$ (1.0% w/w) with traces of AgNO₃ (0.001 M) in distilled water was used.

Apparatus

TLC was used to separate amines and other related compounds by using a glass tank ($28 \times 26.5 \times 9$ cm). Silica gel GF (Analtech, Newark, Del., U.S.A.) plates were employed. Although no special temperature control was used, the laboratory temperature was maintained at $18 \pm 0.5^{\circ}$.

Method

The solution of solid amines and other related compounds (0.05%) in an

alcohol-water mixture (1:1) was spotted in the silica gel TLC plates, at equal distance, one inch above the edge of the plate, by the use of a fine capillary. The spots were allowed to be air dry. The organic phase solvent system butanol-acetic acid-water (50:10:40) was placed in the tank. The tank was covered and left for 2 h for equilibrium to reach between vapour and liquid phase. The plates were held in the tank and the spots were 2 cm above from the liquid surface. The chromatograms were developed until the solvent front had moved below 1 in. from the upper edge of the plate. The plates were removed from the tank and the solvent front was marked. The solvent was removed by evaporation by keeping it at room temperature for 1 h. The plates were further dried by blowing hot air for 5 min. The spot locations were determined by spraying the plates with the above spraying reagent. The coloured spots at once appeared except in cases of sulfapyridine, sulfanilic acid, N,N'-diphenylbenzidine, the spots appeared after keeping the plates at 45° in an oven for 5 min after spraying.

RESULTS AND DISCUSSION

Observations regarding the spot colour, sensitivity and the R_F values are given in Table I. In this process we successfully separated amines and other related compounds and obtained beautiful spots. It was observed that compounds containing a NH₂-group in *para*-position give sharp and bright spots at onze when sprayed with persulphate solution.

Ratney⁹ used nitrogen dioxide as a reagent for the detection of various aromatic amines on thin-layer chromatograms and their sensitivities (smallest detectable

TABLE I $R_{\rm F}$ VALUES AND COLOUR REACTIONS OF AMINES WITH A PERSULFATE-SILVER NITRATE MIXTURE

Compound	Colour of the spots	R_F in butanol-acetic acid-water (50:10:40)	Smallest detectable amount (µg approx.)
p-Aminophenol	Reddish brown	0.70	0.1
m-Aminophenol	Brown	0.78	0.3
p-Phenylenediamine	Bluish black	0.51	0.1
o-Phenylenediamine	Yellow	0.69	0.2
m-Phenylenediamine	Black	0.60	0.2
o-Tolidine	Dark yellow	0.77	0.1
3,5-Diaminobenzoic acid	Yellowish brown	0.68	0.2
3,4-Diaminobenzoic acid	Yellow	0.72	0.2
Diphenylamine	Black	0.92	0.2
Dimethoxybenzidine	Violet	0.73	0.1
N,N'-Diphenylbenzidine	Black (tailing)	0.96	0.3
Diaminobenzidine	Black	0.56	0.2
Benzidine	Yellowish black	0.74	0.3
4,4'-Diaminodiphenyl	Pink	0.76	0.3
3,3'-Diglycolic acid			
Sulfapyridine	Light brown	0.81	•
Sulfanilic acid	Brown (tailing)	0.32	•

^{*} Sensitivity not determined.

556 NOTES

amount). The sensitivity varied from 0.1 to 11 μ g. Although the present sensitivity results are similar to Ratney's, yet better sensitivity is obtained in the case of otolidine. However, we did not try all the amines listed in Ratney's study.

Very satisfactory results were obtained by using an aqueous solution of $K_2S_2O_8$ as a spraying reagent for the identification of aromatic amines separated by TLC using solvents like benzene-methanol¹⁰ and benzene or chloroform¹¹. However, chromatograms should be thoroughly dried. This spraying reagent could not be used where developing solvents contzin phenols.

ACKNOWLEDGEMENT

The authors are indebted to the National Research Council of Canada for financial assistance (A-1125).

REFERENCES

- 1 E. J. Behrmann, J. Amer. Chem. Soc., 89 (1967) 2424.
- 2 E. J. Behrmann and P. P. Walker, J. Amer. Chem. Soc., 84 (1962) 3454.
- 3 E. J. Behrmann, J. Amer. Chem. Soc., 85 (1963) 3478.
- 4 K. C. Khulbe and S. P. Srivastava, Agra Univ. J. Res. Sci., 14 (1) (1965) 99.
- 5 K. C. Khulbe and S. P. Srivastava, Z. Anal. Chem., 208 (1965) 427.
- 6 B. Ekmann, Acta Chem. Scand., 2 (1948) 283.
- 7 S. Kitahara and H. Hiyama, Kogyo Kagaku Zasshi, 58 (1955) 293.
- 8 J. Bertetti, Ann. Chimica, 44 (1954) 495; cf. Z. Anal. Chem., 147 (1955) 226.
- 9 R. S. Ratney, J. Chromatogr., 26 (1967) 299.
- 10 G. Pastuska and H. J. Petrowitz, Chem. Ztg., 88 (1964) 311.
- 11 I. Gemzova and J. Gasparic, Collect. Czech. Chem. Commun., 31 (1967) 5225.